
0

2
3
4

6
7

9
A

C L

F

D 	

M

0

S
T
U
V
w

V

R

1

4

6
7

9

H
E

E
5

E
E

M
E

N
E

E
E

N
E

R
E

,

6
II
111
hi
U

Id

P1

Hardware and software
aspects of screen handling
on the VZ-200/300
Concluding with coverage of the
software interface in the VZ and the
MC6847 VDG, looking at the standard
screen modes.
IT IS NOW OPPORTUNE to briefly discuss the software
interface in the VZ and the VDG. I will only discuss the stan-
dard screen modes used on the VZ — not the additional
modes mentioned in Part 1.

Lo-res/Text/Mode (0) •
In the lo-res mode the screen is formatted into 16 lines down
the usable window with each line containing 32 characters.
Thereby providing 512 addressable characters on the screen.
A quick calculation (or look at Table 1) will show that each
character is composed of 8 by 12 pixels (or dots). Further-
more, each character is 'described' in a single byte in the
video RAM section of memory. The upper left-hand charac-
ter on the screen is memory mapped onto address 7000H
(28672D), and the lower right-hand character is mapped onto
7000H + 1FFH (29183D). A memory map for the lo-res screen
is given in Figure 5.

A formula is often used to calculate the address of a par-
ticular character on the screen. Let AA be the position of the
character ACROSS the line (which ranges from 0 to 31) and
let AD be the line number DOWN the screen (ranges from
0 to 15). i.e: working in the SE quadrant of an X-Y axis sys-
tem. The relationship between (AA,AD) and the address in
RAM is —

MAPPED ADDRESS = START ADDRESS + (32 * AD + AA) or
Addr = 28672 + (32 * AD + AA)

Part 2
Bob Kitch

This calculation is often used in games to POKE values into
selected memory locations or when screen formatting via the
use of the PRINT@ statement where it is performed 'trans-
parently'.

When the VZ is 'soft switched' to MODE (0) three of the
modes in the VDG become available. There are internal ROM
Alphanumerics (Normal and Inverse) and Semigraphics 4.
There is no user-definable external character generator avail-
able in a standard VZ and also the Sernigraphic 6 mode is
not implemented due to hardware limitations. (Although I
understand that the LASER 200 had SG6 rather than SG4 im-
plemented as standard — but see previous section).

Let's digress for a while to describe how the on-chip cus-
tomised character generator located in ROM on the VDG
actually formats the 8 by 12 pixels to form each character.
Firstly, in text mode. Table 2 shows the actual character set
with corresponding codes resident in the VDG ROM. Figure
6 shows a typical character in Alphanumeric Mode (Inter-
nal). The spacing between characters across the line and be-
tween lines is set by the format held in the character
generator. A Non-ASCII type character code is used on the
VZ such that lower case (and control) ASCII characters are
not represented. The 'lower case' ASCII values are used to
signal 'inverse' characters by setting bit 6 high.

An Alphanumeric character in 'normal' mode is colour
selectable as either green or orange with a black background.
In 'inverse' mode, the character is black with the background

89 A BCDEFTABLE 2.
Alphanumeric and
Semigraphic 4 character set
for the VZ-200 and VZ-300
held in MC6847 on-chip ROM.

ISM 	MI 	MINI 	VIM 	MINI 	all 	ON (Users — note errors in shape
• • 	 • 	• 	• 	a table held in VZ ROM for inverse

J, X, 3 and 5).

e e
••as 	mama

% % % % % % %

L I. L L 1r L L L
MO 	IMP 	NMI 	MIN 	IMO 	MI 	Mil 	MI

all "I 	 11 91 II
✓ r r r r r r r
ammo a a a•

VBRBFCNMO

■ a 	• 	1111 	• 	III 	a 	IP

a 	• 	III 	III 	III 	• 	• 	a

(COLOURS)

110 — Australian Electronics Monthly — October 1986

71FFH (29183) 71E0 (29152)

7000H (28672) 701FH (28703) —1

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480

31
63
95
127
159
191
223
255
287
319
351
383
415
447
479
511

alpa inv 6-bit ASCII
*A/S INV

b0
1 Binary = 217D or si cyan
1 Binary = 145D or yellow

being selectable from green or orange. Remember that the
Inverse mode of the MC6847 is set by bit 6 of the data value
contained in video RAM. (see also Figures 1 and 6).

An understanding of this involves looking at individual bits
within the bytes and also looking at how these bits can con-
trol and reset certain control lines on the VDG (as outlined
in Part 1).

In text mode there are 64 characters in each of the Nor-
mal (0-63) and Inverse (64-127) sets. This implies that a 6-bit
code is used to encode the character shape and that bit 6 de-
termines whether Normal or Inverse.

For example:—

b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 0 0 1 0 1 Binary 37D or '%' normal.
0 1 1 0 0 1 0 1 Binary a 101D or '%' inverse.

Note the way that bit 6 determines normal/inverse. Also
note that bit 7 does not change. The most significant bit (MSB)
is used to indicate text character to the on-chip ROM.
In summary, for the character source, a 6-bit ASCII code is
used to call the elemnent from the on-chip ROM, the seventh
bit indicates normal or inverse illumination, and the eighth
bit is held low to indicate Alphanumeric mode.

b7 b6 b5 b4 b3 b2 b1
0 0 1 0 0 1 0
0 1 1 0 0 1 0

b7 b6 b5 b4 b3 b2 bl b0

In graphics mode the Semigraphics 4 mode of the VDG is
used. The 8 by 12 pixel character is divided into four 'rec-
tangular' quadrants of size 4 by 6. The quadrants are `psuedo-
addressable' by selecting the correct area as shown on Figure
7.

In Semigraphics mode, a more comprehensive form of en-
coding is used. The character codes extend from 128 to 255,
implying that the MSB (or bit 7) is set to 1 (or high) to indi-
cate that a graphics character is encoded in the byte. The
graphic block character contains 16 discrete patterns involv-
ing 'switching' on or off the four quadrants. The four
low-order bits handle a quadrant a piece (refer Figure 7). Ad-
ditionally one-of-eight illumination colours is encoded in the
next three bits (bits 6 to 4).
For example:—

4 41
.4

PIXEL OFF

0 PIXEL LIT

.4 • • • • : 0000' • ..•
•
• + +...

•• • •• . • • • * • IP • ••• • • • •IV •••••• • ••• • AV • +. • • • • • •+:.. '• • ••• • •
♦ 	•_•00011Is ••••••• •
• • • • • • •
• • • 4' • • •

. • • • • • • •

5
+1°1

C2 C1 CO Q3 02 01 00

BYTE ORGANISATION

Figure 7. Format of Semigraphic 4 Mode on MC6847. Each
character is 12 by 8 pixels but elements or quadrants can
be individually illuminated giving a screen resolution of 64
by 32 elements in up to eight colours.

Figure 5. Screen addressing
for MODE (0) or lo-res
displays on VZ computers.
This mode corresponds to
Alphanumeric and
Semigraphic 4 on VDG and is
32 by 16 characters in size.
Each character is byte-
mapped as indicated.

INVERSE NORMAL
Black character Black background

Green or orange background (selectable) Green or orange character (selectable)

Figure 6. Format of Alphanumeric Mode — internal on
MC6847. Each character is 12 by 8 pixels and each screen
is 32 by 16 characters. A 6-bit ASCII code specifies the
character from an on-chip ROM.

Ox C2 C1 CO COLOUR

0 X X BLACK

0 0 0 GREEN

0 0 YELLOW

0 0 BLUE
• • 0 RED

0 0 BUFF
ONE

— ELEMENT 1 0 1 CYAN

0 MAGENTA

ORANGE

October 1986 — Australian Electronics Monthly — 111

63,0 701FH (28703)
r
;--- 7000H (28672)

A
63,63 77E0H (30688)

b4 	b3 b2 b1 b0 b7 b6 b5
LISTING 1

LISTING 2

10 '***SNAIL GRAPHICS DEMO***
20 '*** 	HI-RES 	***
30 '*** 	VERSION 1.2 	***
40 'CI* R.B.K. 22/5/86 ***
50 '*** EXECUTION TIME 43.7 SECS.
100 'SET TO HI-RES
120 MODE(1)
130 COLOR 3,0
140 SOUND 10,1
200 FOR V%=0 TO 63
210 FOR H%=0 TO 127
220 SET(H%,V%)
230 NEXT H7.
240 NEXT VV.
250 SOUND 10,1
260 STOP
270 END

10 '***SNAIL GRAPHICS DEMO***
20 '*** 	HI-RES 	***
30 '14* 	VERSION 2.3 	***
40 '*** R.B.K. 22/5/86 ***
50 P*** EXECUTION TIME 8.3 SECS.
100 'SET TO HI-RES.
120 MODE(1)
130 COLOR ,0
140 V%=1701SOUND 10,1
200 FOR I%=28672 TO 30719
210 POKE I1/4 , V%
220 NEXT I%
250 SOUND 10,1
260 STOP
270 END

Figure 8. Screen Addressing
for MODE (1) or hi-res
displays on the VZ computers.
This mode corresponds to
Colour Graphics 2 on the VDG
and is 128 by 64 elements in
size. Each element is mapped
with two bits.

In summary, for Semigraphics mode it can be seen that
each of the four least significant bits controls one of the quad-
rants, whilst the next three bits determine the colour of the
illumination. The most significant bit is set high to indicate
a graphics block is encoded.

graphic colour G3 G2 G1 GO
*A/S

In this mode, although the screen is formatted into 32 by
16 graphics blocks, in fact the quadrant resolution is actual-
ly 64 by 32 and with all of the eight colours available. This
may be thought of as an intermediate resolution display
mode.

Thus it can be seen that Alphanumerics in either Normal
or Inverse style and Semigraphics blocks of up to eight
colours can be individually set on the lo-res screen by byte
mapping. Different forms of encoding the necessary infor-
mation are used in each case. These features combine to make
MODE(0) quite a powerful display despite its lack of reso-
lution.

Hi-res/Graphics/Mode(1)
In hi-res or MODE(1), the screen has 128 by 64 elements
individually addressable. This corresponds to 8192 elements
and with only 2K of video RAM available, then some sort
of trade-off in features over lo-res must ensue. In hi-res, each
element is 2 by 3 pixels in size and is (noticeably) rectangu-
lar in shape. Video RAM addressing extends from 7000H
(28672D) to 71FFH (30719D) — 2048 bytes as shown in Figure
8.

This mode corresponds to Colour Graphics Two (CG2) on
the VDG chip. Each byte addresses four consecutive elements
across the screen. Each element may be one-of-four colours
(selected from either of the two colour sets). Note the trade-
off in colours and the different way in which elements are
addressed on the screen — such that MODE(0) and MODE(1)
screens cannot be mixed.

There are a couple of ways in which each element may be
illuminated.

The simplest (and slowest) way is by using the BASIC com-
mands of SET and RESET. These commands alter two bits
of the appropriate byte in the video RAM area. The process-
ing is very slow because of this limitation and the fact that

it is done through the BASIC interpreter. Listing 1 provides
a simple illustration of this method. The program fills the
entire screen with hi-res elements according to the COLOR
command. The use of integer index variables speeds up the
program a little.

112 — Australian Electronics Monthly — October 1986

77FFH (30719) — -Y
0,63 r.

0,47 w.

0,15 ►

0,31 ►

0,0 ► 41 127,0

127,15

41 127,31

A 127,47

'4 127,63

10 '***NEAR-LIGHT-SPEED GRAPHICS DEMO*** 	LISTING 3 20 '*** 	HI-RES 	 ***
30 '*** 	VERSION 1.2 	***
40 .*** 	R.B.K. 22/5/86 	***
50 .*** EXECUTION TIME 0.5 SECS.
100 '***LOAD BLOCK MOVE MACHINE CODE.***
110 FOR I%=-28687 TO -28674
120 READ A%1 POKE I%,A%
130 NEXT
140 DATA 33,0,112,17,1,112,1,255,7,54,170,237,176,201
200 '***INITIALIZE USR() TO ADDRESS 8FF1H OR -28687D.***
210 POKE 30862,241: POKE 30863,143
300 '***SET TO HI-RES.***
310 MODE(1)
320 COLOR ,0
330 SOUND 10,1
340 X=UFR(0)
350 SOUND 10,1: SOUND 0,9
360 COLOR ,1
370 SOUND 10,1: SOUND 0,9
380 STOP
390 END

::
ii
::
::

:: ::
::

::

::

::

::
::
::
::
1111111111111.111.1111111111111111111.1111.11111.1111.111111.111111.111.111.11111111.

10 '*************************
20 '*** 2000 VZ SCREENS ***
30 '*** 	VERSION 1.2 	***
40 P*** 	R.B.K. 18/5/86 ***
50 '*************************
60 '
100 '***FIND TOP OF MEMORY.
110 M1=PEEK(30898):L1=PEEK(30897):'***PRESERVE TOM POINTERS.
120 TM=M1*256+L1-20 	 :'***RESERVE TOP 20 BYTES.
130 MS=INT(TM/256):LS=TM-MS*256
140 POKE 30898,MS:POKE 30897,LS
150 '
200 '***SET UP LOADING OF USR() ROUTINE.
210 TM=TM+1 	 :'***NEXT ADDR IN RESERVED MEM.
220 MS=INT(TM/256):LS=TM-MS*256
230 POKE 30863, MS: POKE 30862,LS
240 AD=TM+10 	 :'***ADDR. FOR CHARACTER BYTE.
250 IF TW.32767 THEN TM=TM-65536 :'***CONVERT TO SIGNED INTEGER.
260 IF AD>32767 THEN AD=AD-65536
270 '
300 '***LOAD MACHINE CODE.
310 FOR ID=TM TO TM+13
320 READ VL:POKE ID,VL
330 NEXT
340 '
400 '***Z-80 BLOCK MOVE SUBROUTINE.
410 DATA 33,0,112 	:'LD HL,7000H (#28672D START VIDEO RAM)

:'LD DE,7001H (#28673D NEXT OR DEBT.)
:'LD BC,07FFH (#2047D SIZE OF VIDEO RAM)
:'LD (HL),55H (#851) YELLOW OR CHAR."U.)
l'LDIR 	(BLOCK MOVE INSTRUCTION)
:'RET

500 '***INITIALIZE DELAYS - CONTROL SPEED OF EXECUTION BY D.
510.T=0 	:'***TONE 0 IS REST. 	RANGE IS 0 TO 31
520 0=4 	:'***DURATION 9 IS LONG. 	RANGE IS 1 TO 9
530 P=30744 	:'***ADDR. FOR INVERSE CONTROL.
540 POKE P,0 :'***SET UP SCREEN.
550 '
600 '***SET UP DEMO LOOP.
610 FOR ID=0 TO 255
620 	POKE AD,ID 	 :'***SET CHARACTER BYTE.
630 '***SCREEN MESSAGE.
640 	MODE(()) 	 :'***SET *A/G LO.
650 	POKE P,0 	 :'***SET INV LO.
660 PRINT8234," CHAR = . ; ID:SOUND T,D
670 '***LO-RES SCREENS.
680 '***LO-RES GREEN CHARACTER ON BLACK BACKGROUND.
690 	X=USR(0):COLOR,O:SOUND T,D:'***SET CSS LO.
700 '***LO-RES ORANGE CHARACTER ON BLACK BACKGROUND.
710 	COLOR,1:SOUND T,D 	:'***SET CSS HI.
720 	POKE P,1 	 :'***SET INV HI.
730 '***LO-RES BLACK CHARACTER ON GREEN BACKGROUND.
740 	X=USR(0):COLOR,O:SOUND T,D:'***SET CSS LO.
750 '***LO-RES BLACK CHARACTER ON ORANGE BACKGROUND.
760 	COLOR,1:SOUND T,D 	:'***SET CSS HI.
770 	'***HI-RES SCREENS.
780 	MODE(1) 	 :'***SET *A/G HI.
790 	POKE P,0 	 :'***SET INV LO.
800 '***HI-RES COLOR SET 0 - GREEN SURROUND.
810 	X=USR(0):COLOR,O:SOUND T,D:'***SET CSS LO.
820 '***HI-RES COLOR SET 1 - BUFF SURROUND.
830 	COLOR,1:SOUND T,D 	:'***SET CSS HI.
840 	POKE P,1 	 :'***SET INV HI.
850 '***HI-RES COLOR SET 0.
860 X=USR(0):COLOR,O:SOUND T,D:'***SET CSS LO.
870 '***HI-RES COLOR SET 1.
880 	COLOR,1:SOUND T,D 	:'***SET CSS HI.
890 '***RESET CONTROLS.
900 POKE P,O:COLOR,O:CLS
910 NEXT
920 '
930 '***RESET TOM POINTERS.
940 POKE 30898,M1:POKE 30897,L1
950 STOP:END

LISTING 4

420 DATA 17,1,112
430 DATA 1,255,7
440 DATA 54,85
450 DATA 237,176
460 DATA 201
470 '

TABLE 3:
CONFIGURATION OF BYTES IN MODE (1).

3 2 • 1 0 Element #

0 0
0

00
0

00
0

00
0

01
64

01
16

01
4

01

1 0
128

1 0
32

10
8

1 0
2

1 1
192

1 1
48

1 1
12

1 1
3

The decimal numbers corresponding to each element position AND colour

provide the value that needs to be POKE'd or loaded.

of the screen. If, however, a striped screen consisting of RED-
GREEN-BLUE-YELLOW vertical bands is required, then
POKE (192 + 0 + 8 + 1) or 201D.

Although only four colours are available, there are two
colour sets available. These are called by the COLOR
command.

COLOR, 0 sets the background colour to green and the
`strong' colours of yellow, blue and red are available.

COLOR, 1 sets the background to buff and the 'pastelle'
colours of cyan, magenta and orange are available.

To think back to the RESET command mentioned before,
it should be apparent that this command simply resets each
dibit or element back to OOB, or the background colour.

Finale
Well there we have it! For those who have perservered thus
far I have included Listing 4 which is entitled '2000 VZ
Screens'. It is about as exciting as watching a Late Night
Movie — and takes about as long to run! Actually it illustrates
all of the features discussed in this article. For those who wish
to sit-it-out -- watch those control lines operate!

Bin. = four GREEN/BUFF elements.
Dec. = OD

Bin. = four YELLOW/CYAN elements.
Dec. = 85D

Bin. = four BLUE/MAGENTA elements.
Dec. = 170D

Bin. = four RED/ORANGE elements.
Dec. = 255D

A quicker way is to POKE values into each byte, thereby
setting four elements at a time. Listing 2 demonstrates this
technique. This program also fills the entire hi-res screen with
elements whose colours are determined by the variables V%.

The quickest way is to use a machine language program
to load appropriate values into the video RAM. This tech-
nique is a very rapid way to fill the screen. Listing 3 is an
example of this method. This program POKEs machine code
into hi-memory. The subroutine uses the very efficient Z80
Block Move command to fill the screen according to the value
stored at address -28677D. It is fast!

Both of the last two methods require that an understand-
ing of the value to enter into RAM is known. This requires
a knowledge of how each byte is organised in CG2 mode.

As mentioned previously, each byte controls four elements
which can be selected from four colours. Bits are treated in
pairs (dibits!) with each pair corresponding to an element.
Each dibit can have a value of OOB to 11B to indicate colour.
This is set out on Table 3.

Four example, suppose we want an entirely BLUE screen.
Then POKE (128 + 32 + 8 + 2) or 170D into the appropriate area

October 1986 — Australian Electronics Monthly — 113

	Page 1
	Page 2
	Page 3
	Page 4

